Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Miao Du,* Xiao-Jun Zhao and Jian-Hua Guo

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's
Republic of China

Correspondence e-mail:
dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.082$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaquacobalt(II) bis(isonicotinate N-oxide): a redetermination and analysis of the hydrogen-bonding interactions

In the crystal structure of the title complex, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](L)_{2}$ (L = isonicotinate N-oxide, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}$), the $\mathrm{Co}^{\mathrm{II}}$ center, on a special position with site symmetry $2 / m$, is in an elongated octahedral environment composed of six coordinated water molecules. Each water ligand forms two strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the adjacent isonicotinate N-oxide counter-ions, which lie on mirror planes, forming a threedimensional hydrogen-bonding supramolecular architecture.

Comment

Carboxypyridine N -oxide compounds contain both N -oxide and carboxyl functional groups, and exhibit a variety of coordination modes with metal ions (Mao et al., 1998) and hydrogen-bonding interactions (Du \& Zhao, 2003). The crystal structure of the title complex, (I), has been reported previously by Knuuttila (1981) in the monoclinic system and space group $P 2_{1} / c[a=7.747(2) \AA, b=9.826(2) \AA, c=$ 11.474 (2) $\left.\AA, \beta=91.08(2)^{\circ}\right]$. Recently, we have redetermined the structure of (I) and two main points will be emphasized in this contribution: (i) the space group of (I) should be $C 2 / m$, which has a higher symmetry, and the bond geometries are significantly more precise than those reported previously, and (ii) the analysis of the interesting hydrogen-bonding interactions.

(I)

The crystal structure of (I), illustrated in Fig. 1, consists of a hexaquacobalt(II) cation and two isonicotinate N-oxide anions in its chemical formula unit. Each $\mathrm{Co}^{\mathrm{II}}$ center, octahedrally coordinated by six water ligands, is located at a special position with site symmetry $2 / m$. Four crystallographically equivalent water molecules, atoms O3, are in the equatorial plane with $\mathrm{Co}-\mathrm{O}$ distances of 2.038 (2) \AA, and two

View of the molecular structure of (I), showing the atomic labeling of the asymmetric unit, with displacement ellipsoids drawn at the 30% probability level.

Received 4 May 2004
Accepted 10 May 2004
Online 15 May 2004

Figure 2
View of the hydrogen bonds (indicated by dashed lines) in the structure of (I).

Figure 3
View of the three-dimensional supramolecular architecture along the [100] direction. Hydrogen-bonding interactions are indicated by blue dashed lines.
water molecules, atoms O4, occupy the axial positions with $\mathrm{Co}-\mathrm{O}$ lengths of 2.059 (3) A. Selected bond lengths and angles are listed in Table 1. The coordination environment of $\mathrm{Co}^{\mathrm{II}}$ can be described as a slightly elongated octahedral, with the cis- $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles in the range 86.05 (13)-93.95 (13) .

In this structure, the isonicotinate N-oxides, which lie on mirror planes, act only as counter-anions to balance the charges, and do not take part in any direct coordination interaction with the metal center. The nearest $\mathrm{Co} \cdots \mathrm{O} 1$ and Co $\cdots \mathrm{O} 2$ distances are 4.113 (2) and 4.032 (3) \AA, respectively. The $\mathrm{N}-\mathrm{O}$ distance is 1.320 (3) \AA, which is slightly, but significantly, elongated compared to the average value of $1.304 \AA$ in pyridine N-oxides and consistent with the values observed in other carboxypyridine N-oxide derivatives (Du \& Zhao, 2003).

Analysis of the crystal packing of the title complex reveals the existence of four crystallographically independent intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, between the coordinated water molecules and the isonicotinate N-oxide anions. This results in the formation of a three-dimensional hydrogenbonding network. As shown in Fig. 2 and Table 2, each O4 water ligand forms two intermolecular hydrogen bonds (indicated by purple dashed lines in Fig. 2), $\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iv }}$ and $\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 2^{\mathrm{iii}}$ [symmetry codes: (iii) $1-x, 1-y$, $1-z$; (iv) $x, y, z+1$], with the N-oxide groups. The resulting motif A, in the formalism of graph-set analysis of hydrogenbond patterns (Etter, 1990), is characterized as $N_{4}=R_{4}^{2}(8)$. Meanwhile, each carboxylate group serves as hydrogenbonding acceptors from each O 3 aqua ligand (indicated by black dashed lines in Fig. 2), $\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {vii }}$ and $\mathrm{O} 3-$ $\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{v}}$ [symmetry codes: (v) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (vii) $2-x$, $2-y, 1-z]$. Four similar hydrogen-bonding ring motifs A^{\prime} [$\left.N_{4}=R_{4}^{2}(8)\right]$ are observed, together with two new patterns B $\left[N_{2}=R_{2}^{2}(8)\right]$. Thus, the $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations are connected by these $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to the anions, forming a three-dimensional supramolecular architecture, as shown in Fig. 3. The relevant hydrogen-bonding geometrical details are listed in Table 2; these values are in the normal range for hydrogen-bonding interactions (Desiraju \& Steiner, 1999). Examination of this structure with PLATON (Spek, 2003) indicates that there are no solvent-accessible voids in the crystal structure of (I).

Experimental

Isonicotinic acid N-oxide ($0.139 \mathrm{~g}, 1 \mathrm{mmol}$) was completely dissolved in methanol (20 ml) with stirring and heating. A solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.119 \mathrm{~g}, 0.5 \mathrm{mmol})$ in methanol (10 ml) was added dropwise and the solution turned orange. $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}(2 \mathrm{ml})$ was then added dropwise to raise the pH to about 7 and the solution turned pink. After filtering the solution, it was left to stand at room temperature. Pink block-like single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent over a period of one week (yield: 60%). Analysis calculated for the title compound: C 32.52 , H 4.55 , N 6.32%; found: C 32.18 , H 4.67 , N 6.11\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}$
$M_{r}=443.23$
Monoclinic, C2/m
$a=11.425$ (4) A
$b=9.780(4) \AA$
$c=7.726(3) \AA$
$\beta=90.967$ (6) ${ }^{\circ}$
$V=863.2(6) \AA^{3}$
$Z=2$
$D_{x}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 756 reflections
$\theta=2.7-28.0^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pink
$0.28 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\min }=0.688, T_{\max }=0.880$
2775 measured reflections

1086 independent reflections
1061 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-8 \rightarrow 13$
$k=-11 \rightarrow 9$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.082$
$S=1.01$
1086 reflections
72 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0203 P)^{2}\right. \\
& +2.5192 P] \\
& \begin{array}{l}
\quad+2.5192 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3
\end{array} \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0032 \text { (9) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{O} 3$	$2.0378(18)$	$\mathrm{C} 4-\mathrm{O} 1^{\mathrm{i}}$	$1.240(2)$
$\mathrm{Co} 1-\mathrm{O} 4$	$2.059(3)$	$\mathrm{N} 1-\mathrm{O} 2$	$1.320(3)$
$\mathrm{O}_{2}-\mathrm{Co} 1-\mathrm{O} 3^{\mathrm{i}}$	$86.05(13)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{iii}}$	$91.13(9)$
$\mathrm{O}_{3}-\mathrm{Co} 1-\mathrm{O}^{\mathrm{ii}}$	$93.95(13)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4$	$88.87(9)$

Symmetry codes: (i) $x, 1-y, z$; (ii) $1-x, y, 1-z$; (iii) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{~N} 1^{\text {iii }}$	0.85	2.67	3.495 (4)	163
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iii }}$	0.85	1.76	2.603 (4)	172
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iv }}$	0.85	1.90	2.715 (4)	161
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.84	1.89	2.721 (3)	169
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {vi }}$	0.85	1.82	2.664 (2)	178

Although all the H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, and included in the final refinement in the riding-model approximation; $\mathrm{O}-\mathrm{H}=$ $0.84-0.85 \AA, \mathrm{C}-\mathrm{H}=0.93 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge financial support from the Natural Science Foundation of Tianjin (No. 033609711) and the Starting Funding of Tianjin Normal University (to MD).

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Du, M. \& Zhao, X. J. (2003). Acta Cryst. E59, o1645-o1647.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Knuuttila, P. (1981). Inorg. Chim. Acta, 52, 141-147.
Mao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. \& Mak, T. C. W. (1998). Polyhedron, 17, 3999-4009.
Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

